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APPARATUS FOR MEASURING EMITTANCE AND ABSORPTANCE 

AND RESULTS FOR SEIZCTED MATEEIALS 

by Henry B. C u r t i s  and Ted W. Nyland 

L e w i s  Research Center 

SUMMARY 

An apparatus f o r  measuring hemispherical t o t a l  emittance and normal so l a r  
absorptance is  described. 
measurements a t  specimen temperatures between 2EO0 and 60O0 K. 
so la r  simulator that i s  used i n  the absorptance measurements i s  described. A 
description of a blackbody normal absorptance standard is  given. Results are 
given fo r  t h e  following surfaces:  four plasma-sprayed ceramics, zirconium 
s i l i c a t e ,  strontium t i t ana te ,  calcuim t i tana te ,  and barium t i tana te ;  two 
ceramics applied by the  Rokide process, Rokide MA and Rokide ZS; anodized alumi- 
num, uncoated and electrophoret ical ly  blackened; and a white epoxy- 
The accuracy of the apparatus i s  discussed. 

A steady-state heat balance method i s  used i n  making 
A carbon-arc 

INTRODUCTION 

The predict ion and control  of temperature i n  space systems i s  dependent on 
a knowledge of the thermal radiat ion parameters of the materials used on the  
surfaces viewing the  space environment. Two of the important rad ia t ion  param- 
e t e r s  are  hemispherical t o t a l  emittance and normal solar absorptance. The r e l -  
a t ive  importance of these parameters depends on the  temperature l e v e l  and the  
space environment. For example, i n  a space power system, the  s i ze  of a radia-  
t o r  with a required heat-rejection rate and a given temperature d is t r ibu t ion  i s  
a function of t he  hemispherical t o t a l  emittance. 
and weight due t o  var iable  thermal properties such as hemispherical t o t a l  emit- 
tance i s  fur ther  discmsed i n  reference 1. A s  t he  operating temperatures of 
space systems or components assume lower levels  (under 600" K), t he  so l a r  zb- 
sorptance of the surfaces must a l so  be considered. An example of this s i tua-  
t i o n  i s  a s a t e l l i t e  with negligible internal  heat generation. Such a s a t e l l i t e  
would achieve an equilibrium temperature dependent on t h e  hemispherical t o t a l  
emittance, so l a r  absorptance, and thermal environment during operation. 

The e f f ec t  on rad ia tor  s i ze  

Many problems involving coatings for  space systems have been encountered i n  
projects  undertaken a t  the Lewis Research Center. This report  describes an ap- 



paratus t h a t  i s  used t o  measure hemispherical t o t a l  emittance and normal so l a r  
absorptance (hereinaf ter  referred t o  as emittance and absorptance, respec- 
t i ve ly ) .  

A unique feature  i n  the  operation of the apparatus i s  t h e  capabi l i ty  of 
making emittance and absorptance measurements on the same t e s t  specimen under 
simulated space conditions of vacuum and temperature. This i s  a d i r ec t  mea- 
surement of the  rad ia t ion  parameters used i n  heat-transfer analyses of space 
systems. The apparatus operates on a steady-state energy balance pr inciple  and 
w a s  designed and assembled a t  the  Lewis Research Center. 
measurement techniques a re  described i n  references 2 t o  7. 

Similar calorimetric 

Measurements of emittance and absorptance on a var ie ty  of selected mater- 
i a l s  a r e  included i n  t h i s  report. These rad ia t ion  parameters are given fo r  
such coatings as plasma-sprayed ceramics and epoxy-based paint.  

The ultimate uses of these coatings include low-temperature rad ia tors  
(under 600' K ) ,  which require a high emittance, and temperature control  sur- 
faces of space systems and experiments. 
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SYMBOLS 

area of t e s t  surface, sq cm 

area of receiver, sq cm 

voltage across heater p la te  heating element, v 

f ract ion of specimen rad ia t ion  incident on receiver 

f ract ion of receiver rad ia t ion  incident on specimen 

power absorbed by t e s t  surface from receiver,  w 

power absorbed by t e s t  surface from so la r  simulator, w 

in tens i ty  of simulated solar irradiance,  w/sq cm 

current through heater  p l a t e  heating element, amp 

power diss ipated i n  heater p la te  without so l a r  irradiance,  w 

power diss ipated i n  heater p l a t e  with so la r  irradiance,  w 

power emitted from t e s t  surface, w 

power in te rna l ly  diss ipated i n  heater, w 

extraneous power exchange, w 

power emitted from receiver  surface,  w 



'Qs simulated so la r  power, w 

T specimen temperature, 9( 

T O  receiver  temperature, K 

a hemispherical absorptance of specimen f o r  receiver rad ia t ion  

US 

E hemispherical t o t a l  emittance of specimen 

hemispherical t o t a l  emittance of receiver EO 

0 Stefan-Boltzmann constant, w/( sq em) ( OK4) 

0 

normal solar absorptance of specimen 

MEASURING TECHNIQUE 
A s teady-state  energy-balance method i s  used i n  making measurements of t he  

rad ia t ion  parameters. A schematic diagram of the  t e s t  apparatus i s  shown i n  
figure 1. The t e s t  specimen i s  attached t o  a heater  p l a t e  t h a t  contains a 

Test specimen 
mounting flange 

,-Test specimen, heater plate, 
Coolant outlet 

\ r Q u a r t z  
w i n d w  

7 

rBlackened surface 

Figure 1. - Schematic of test apparatus. 

source of i n t e rna l  heat. This assembly i s  placed i n  a known thermal environment 
and i s  i so la ted  i n  such a manner t h a t  the only form of heat t r a n s f e r  from the  
assembly i s  by rad ia t ion  from t h e  t e s t  surface. With a t e s t  specimen of known 
area, the temperature of t h e  t e s t  specimen assembly i s  measured along with the  
power required t o  maintain t h a t  temperature. With these data the  emittance i s  
ealculated from the  following equation, which was derived from an energy balance 
and the Stef an-Bolt zmann law: 

P 
aA(T4 - T:) 

€ =  

A der ivat ion of t h i s  equation i s  given i n  appendix A. 

The absorptance i s  determined by measuring the  power required t o  maintain 
the  t e s t  specimen assembly a t  the same temperature under two conditions: with 
and without simulated so la r  i r radiance incident normally t o  the  t e s t  specimen. 

3 



The difference i n  the two power measurements i s  the  r a t e  a t  which simulated 
so la r  energy i s  being absorbed. 
dure used i n  measuring so lar  i r radiance with an angstrom pyrheliometer ( ref .  8). 
If t h e  solar  i r radiance i s  known, the absorptance can be calculated from the  
following equation: 

This technique i s  a modification of t he  proce- 

H 

(2 )  P - P' 
AH 

as = 

TEST APPARATUS 
The t e s t  f a c i l i t y  i s  designed t o  measure the  emittance and the absorptance 

(1) An evacuated blackbody low-temperature radiat ion receiver 

(2 )  A t e s t  specimen assembly 

(3) A support o r  mounting assembly t h a t  minimizes external  energy losses  

(4)  A carbon-arc so la r  simulator 

(5) TWO automatic temperature cont ro l le rs  

and includes the following apparatus: 

from the  specimen 

Test Specimen 

The t e s t  apparatus i s  designed t o  use square samples 6.45 square cent i -  
meters (1 sq in.)  i n  surface area. 
aluminum substrate  ( f ig .  2) .  Aluminum i s  normally used as the  substrate  mater- 
i a l  because of i t s  high thermal conductivity. The t e s t  sample and the  sub- 
s t r a t e  are hereinaf ter  referred t o  as the  t e s t  specimen. A 32-gage (0.008-in. - 
diam.) iron-constantan thermocouple i s  peened i n t o  the  edge of the  t e s t  speci-  
men fo r  temperature measurements. 

The sample i s  applied or bonded t o  an 

Test Chamber 

A schematic diagram of the  t e s t  
apparatus can be seen i n  f igure  1. 
The t e s t  chamber consis ts  of a s ta in-  
l e s s  s t e e l  cylinder 63 centimeters 
long and 20 centimeters i n  diameter. 
The radiat ion receiver i s  located 
concentrically within the  chamber and 
consis ts  of a hollow sleeve 55 cent i -  
meters long with an inside diameter 
of 15  centimeters. Liquid nitrogen 

\, ,rThermocouple i s  c i rculated through the  sleeve t o  

0.47 cm 
Test surf?f--.. ,j{ 

0.16 C 

45' 1.59 cm \, leads maintain the  receiver  a t  a known low 
'L Su bst rate temperature. The i n t e r i o r  surface of 

the  receiver  i s  blackened with carbon 
black t o  obtain a high absorptance 

Figure 2. -Test Specimen. 
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” 
.surface. A quartz window clamped on one end flange of the t e s t  chamber admits 

simulated so la r  radiation. 
supported from the  opposite end flange and are positioned so t h a t  the  plane of 
the  t e s t  specimen i s  perpendicular t o  the longitudinal axis  o f  the  cylinder. A 
vacuum system, which consis ts  of  a liquid-nitrogen-baffled o i l  diffusion pump, 
evacuates the t e s t  chamber t o  t he  range of  10-7 t o r r .  

The t e s t  specimen and the mounting assembly are  

Test Specimen Mounting Assembly 

A cutaway drawing of t h e  t e s t  specimen mounting assembly i s  shown i n  f i g -  
ure 3. The tes t  specimen i s  held with two cap screws t o  a heater  plate .  A t  

times, a t h i n  layer  of vacuum 
grease i s  spread between the  
t e s t  specimen and the  heater 
p la te  t o  ensure good thermal 
contact. No differences i n  
measured rad ia t ion  parameters 
of t he  t e s t  specimen due t o  the  
presence of t h e  grease have 
been noted. The heater  p la te  
i s  made from aluminum 2.4 cent i -  
meters square by 3 millimeters 
thick.  A s e r i e s  of grooves i s  
milled part w a y  through t h e  
p la te ,  and a length of 36-gage 
(0.005-in. -diam. ) f iber-glass-  

Test specimen 

I power leads 
Heat s h i e l d 1  

Figure 3. - Test specimen assembly and heat shield. 

insulated Chrome1 wire i s  ce- 
mented i n t o  each groove. This 
w i r e  i s  the r e s i s t i v e  heating 
element within the  t e s t  speci-  
men assembly. A 36-gage i ron-  

constantan thermocouple i s  peened i n t o  the surface of t h e  p la te  and i s  used as 
the  sensing element i n  a temperature control system. 

The tes t  specimen and the  heater p la te  together a re  known as the  t e s t  
specimen assembly. The t e s t  specimen assembly i s  centered inside a 
temperature-controlled heat shield w i t h  four thermally insulated screws as 
shown i n  f igure  3. 
cup having inside dimensions of 2.7 by 2.7 by 1.4 centimeters. 
f iber-glass-insulated-iron wire i s  cemented i n  a se r i e s  of grooves milked on 
the  outside surface and i s  used as the heating element fo r  t he  heat shield. A 
%-gage iron-constantan thermocouple i s  attached t o  the  shield and used as the  
sensing element of a second temperature control system. 
assembly and the  heat shield are  controlled t o  the  same temperatures by two 
automatic control lers ,  which are described i n  the  following section. 

The heat shield i s  made of aluminum i n  the  form of a square 
Thirty-two-gage 

Both t h e  t es t  specimen 

For the  purpose of reducing radiant  heat losses  from the edge of t he  t e s t  
specimen, a mask i s  placed on the  outside surface of the  heat  shield and i s  ad- 
justed so that the  s l o t  width between the t e s t  specimen surface and t h e  heat 
shield i s  minimized. The power and poten t ia l  leads from the  t e s t  specimen as- 
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Figure 4. - Test specimen mounting assembly with flange. 

semblf k d  the  heat sh ie ld  are 
wrapped around the  heat shield 
s o  that. a negl igible  amount of 
power from t h e  t e s t  specimen i s  
l o s t  because of thermal conduc- 
t ion.  

The tes t  specimen can be 
mounted t o  t h e  heater  p l a t e  
without removing t h e  heater 
p la te  from the  cup assembly. 
The cap screws a r e  inser ted 
through two holes i n  t h e  heat  
sh ie ld  and i n t o  the t e s t  speci- 
men. I n  t h i s  manner the  need 
f o r  making a heater element fo r  
each tes t  specimen i s  e l i m i -  
nated. The e n t i r e  t e s t  speci-  

men mounting assembly i s  supported from an end flange and i s  shown i n  f igure  4. 

Automatic Temperature Controllers 

A block diagram of the  temperature measurement and the  control  systems i s  
shown i n  figure 5. The purpose of t h e  control  systems i s  t o  maintain the  t e s t  
specimen assembly and the heat  shield a t  the  same temperature s o  t h a t  any heat  
t r ans fe r  between these two elements i s  made negligible.  For control, a nul l -  
balance method i s  employed t h a t  uses two s imilar  control  systems for the  heat 
sh ie ld  and the t e s t  specimen assembly. 

I n  both systems, t h e  electromotive force of the  thermocouple used f o r  tem- 
perature measurement and control  i s  referenced t o  a cold junction and compared 

Ammeter 
Voltmeter 

Figure 5. - Temperature control system. 
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Potentiometer 
set-point 
reference 

with a known set-point 
voltage. The difference 
between these voltages is  
an e r r o r  signal t h a t  i s  
detected by a commercial 
n u l l  meter. The set-point 
voltage i s  s t ab i l i zed  with 
a temperature-compensated 
Zener diode. A t r ans i s -  
to r ized  power amplifer, 
similar t o  t h a t  described 
i n  reference 9, i s  placed 
across the  indicator  c i r -  
c u i t  of the n u l l  meter. 
The output of t he  power 
amplifier is  a current  
t h a t  i s  a function of t he  
thermocouple-set-point 
e r r o r  signal. This cur- 
r en t  flows through t h e  



beating element and thus con?trols t he  temperature. 
c 

The power generated within the  t e s t  specimen assembly i s  determined by 
measuring the  voltage drop across and the  current through the  heater  element. 
A commercial potentiometer i s  used i n  making these power measurements. 
switching c i r c u i t  provides a means for  measuring t h e  temperature set-point  
voltage external ly  with a potentiometer and f o r  balancing the  heat  sh ie ld  s e t  
point against  the t e s t  specimen assembly set  point. 

A 

Solar Simulator 

The solar simulator consis ts  of a carbon arc  and an opt ica l  system. A 
diagram of the  op t i ca l  system i s  sham i n  figure 6. A fused quartz re f rac t ive  

condensing system i s  used t o  
form an image of the  a rc  mag- 
n i f ied  three  times. This 
image i s  located a t  the  foca l  
point of a spherical  mirror 
that forms a collimated beam. 
One of t h e  condensing lenses 
i s  imaged i n  the  t e s t  plane 
t o  maximize beam uniformity. 
By use of su i tab le  optics,  a 
portion of t h e  beam i s  d i -  
rected toward a photovoltiac 
c e l l  t h a t  a c t s  as a radiat ion 
monitor and sensor f o r  an 
automatic i n t ens i ty  control  
system. The plane of the 
photocell i s  conjugate t o  the 
t a rge t  plane i n  the  system. 
The movable lenses i n  the  con- 
densing system are  automati- 
c a l l y  positioned t o  compen- 
sa te  fo r  f luc tua t ion  i n  the  
source radiance. More de- 
t a i l s  of a similar so la r  
simulator are given i n  re fer -  
ence 10. 

r Carbon arc source 

Figure 6. - Diagram of optical system of solar simulator. The output of the simu- 

with a f l u x  densi ty  equal t o  t h a t  of solar radiat ion outside the atmosphere of 
t he  Earth (0.14 w/sq cm 52 percent). The spec t ra l  d i s t r ibu t ion  of the irradi- 
ance of the  simulator has been measured, and t h e  bes t  known values a re  plot ted 
i n  f igure  7. Numerous d i f f i c u l t i e s  are encountered i n  measuring such spec t r a l  
d i s t r ibu t ions ;  hence, there  i s  considerable uncertainty about t h i s  curve. For 
comparison, a normalized Johnson curve, which i s  the  generally accepted spec- 
t r a l  d i s t r ibu t ion  of so la r  energy outside the  atmosphere of t he  Earth (ref .  11) , 
is a l s o  shown i n  f igure 7. The areas under both curves have been made equal. 

l a t o r  i s  a collimated beam 

7 
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Figure 7. - Normalized spectral distribution of solar simulator irradiance. 

Calibration of t he  t o t a l  i r radiance of t h e  simulator i s  described i n  appendix B. 

APPARATUS ACCURACY 

Emittance Measurement.s 

A comprehensive e r ro r  analysis  has been performed t o  determine instrument 
accuracy. A similar e r ro r  analysis  of t h e  calor imetr ic  techniques f o r  measur- 
ing emittance is given i n  reference 12 .  This analysis,  along with some experi-  
mental ver i f icat ion,  indicates  t h a t  emittance measurements a r e  accurate t o  
f 5  percent of the  readings over t h e  range of measurements c i t e d  i n  t h i s  report .  
The instrument i s  inherent ly  more accurate a t  higher temperatures, and the  
emittance measurement i s  within f 2  percent a t  600° K. The following l i s t  ind i -  
cates  t he  main sources of e r ro r  and t h e i r  magnitudes f o r  the  instrument and 
measurement technique: 

(1) Temperature measurement (+lo K) 

( 2 )  Power measurement (0 .3 percent) 

(3) Assumption of black body rad ia t ion  receiver  ( e O . 1  percent) 

( 4 )  Heat losses  due t o  nonisolation of t e s t  specimen assembly (53 percent) 

(a) Thermal conduction i n  lead wires 

(b) Extraneous rad ia t ion  exchange from t e s t  specimen assembly 

( c )  Residual gas conduction 

a 



& (d) Thermal conduction through mounting arrangement 

(5) Assumption of gray body t e s t  surface (fO. 4 percent) 

(6)  Nonequilibrium of specimen temperature during measurement ( k 1  percent) 

The major portion of uncertainty i n  the  measurements i s  associated with t h e  
heat-loss term. 
the operation of the apparatus. 
t o  within +1 percent. This indicates t h a t  random er rors  i n  the  measurements 
a re  negl igible  t o  t h i s  degree. 

The magnitude of t he  heat-loss term depends on the  design and 
The emittance measurements have been repeatable 

Absorptance Measurements 

The sources of e r ro r  inherent i n  t h e  absorptance measurement a re  divided 
i n t o  those associated with the  s o l a r  s i m u l a t o r  and those associated with the  
r e s t  of t h e  t es t  apparatus. 
caused by  the mismatch between the spec t ra l  d i s t r ibu t ion  of irradiance of t he  
simulator and the Johnson curve and the  uncertainty i n  such measurements. It 
should be emphasized t h a t  the magnitude of error  depends on t h e  spec t r a l  ab- 
sorptance of a par t icu lar  t e s t  surface. Such an e r ro r  would occur i f  the spec- 
t r a l  absorptance of a t e s t  surface were high i n  a wavelength band where the 
simulator had an excess of output irradiance. 
be absorbed by  the  t e s t  surface than under t rue  so l a r  irradiance. 
lead t o  an e r ro r  i n  the measured absorptance of 20 t o  30 percent. 

The er ror  due t o  the so la r  simulator i s  mainly 

In  t h a t  case, more energy would 
This might 

Since the  power i s  measured under two ident ica l  thermal conditions, many 

However, a major portion of 
of the e r ro r s  associated with the  t e s t  apparatus are  e f fec t ive ly  cancelled, as 
indicated i n  t h e  sect ion Emittance Measurements. 
t he  e r ro r  i n  t h e  absorptance measurement i s  caused by not having iden t i ca l  
thermal equilibrium conditions during the  two power measurements. Also, un- 
controlled f luc tua t ions  i n  the  t o t a l  irradiance of the solar simulator cause 
addi t ional  e r ro r  i n  absorptance measurements. The magnitude of e r ro r  not in-  
volved with t h e  spec t r a l  d i s t r ibu t ion  of the so la r  simulator i s  estimated t o  be 
?5 percent, Repeatabil i ty t e s t s  have shown t h a t  most of t h i s  e r ror  i s  random 
i n  nature. 

RESULTS 

Ceramic Coatings 

Measurements of emittance and absorptance have been made on several  ce- 
ramic coatings applied t o  aluminum substrates. These coatings a re  being i n -  
vest igated f o r  possible use on radiators  operating under 600° K. The ceramic 
coatings that were measured a re  barium t i t ana te ,  calcium t i t ana te ,  Rokide MA, 
Rokide ZS, strontium t i t ana te ,  and zirconium s i l i c a t e .  
as a function of temperature f o r  s i x  ceramics. 
determined by  weighing the  specimen before and after application of the coat- 
ing, i s  given as w e l l  as the  approximate thickness, which may be i n  e r ro r  by 
20.02 millimeter. 

Figure 8 shows emittance 
The coating mass per un i t  area, 

Table I gives the emittance a t  500' K f o r  each specimen. 
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c 

Coating mass 
per  u n i t  area,  

w/sq em2 

TABLE I. - EMITTANCE AND ABSORPTANCE 

Emittance,a Absorptance,b 
E a 

Coating 

5.9 
1 7  
49 

6.2 
11 -3 
23 

Bar ium 
tit anate  

Calcium 
tit anat e 

0.75 
.82 
-87 

0.75 
.82 
.88 

Rokide MA 

Rokide ZS 

2.3 
6 .O 

31 

6.5 
32 

1 2  
28 
40 

8.3 
9.5 
29 

Strontium 
t i t a n a t e  

0.55 0.55 
.71 .58 
-82 .41 

0.79 0.54 
.89 .45 

0.81 0.73 
.82 .76 
.83 .64 

0.83 0.46 
.83 .38 
.86 -37 

Zirconium 
s i l i c a t e  

Coating X-ray d i f f r ac t ion  
ana lys i s  

aAt 5000 K.  
bAt  400' K. 

Spectrographic 
ana lys i s  

0.65 
.61 
.74 

0.72 
.70 
.70 

Table I1 gives r e s u l t s  of X-ray 
d i f f r ac t ion  t e s t s  and spectro- 
graphic analyses for t h e  consti-  
tuents  of the  t e s t  specimens. 

There i s  l i t t l e  dependence 
of emittance on temperature; 
however, there  i s  an increase i n  
emittance as coating mass in -  
creases. This can be seen i n  
figure 9, i n  which emittance a t  
5000 K is  plot ted against  coat- 
ing mass. 
spec i f ic  coatings, increasing 
the coating mass up t o  approxi- 
mately 15 milligrams per square 
centimeter increases the  emit- 
tance of t he  coating. Beyond 
15 m i l l i g r a m s  per square cent i -  
meter, there  i s  l i t t l e  fur ther  
change i n  emittance. Comparison 
of the  emittance values with 
those published i n  reference 13 
shows a general agreement i n  the  
overlapping temperature region. 

For any of these 

The absorptance data of 
each specimen are given i n  
t ab le  I. I n  general, the  ab- 
sorptance i s  constant with tem- 

Bar ium t i t a n a t e  
Calcium t i t a n a t e  

Rokide MA 

Rokide ZS 

Strontium t i t a n a t e  

Zirconium s i l i c a t e  

BaO -Ti02 
CaO 'Ti02  (perovskite) 

Qo*fi203 

ZrOZ (cubic) 

SrO 'Ti02 

Zro2 (cubic) 

Ba - T i  - A l  - S i ,  Cu 
T i ,  Ca - Z r ,  M g ,  Al - Na, B, 

Cu, S i ,  Fe, N i ,  Pb, Mn 
Al, M g  - S i  - Fe, B, T i ,  

Na, Mn, G a  
Z r ,  S i  - Al - Mg, Ca - T i ,  

Cu, B, Fe 
Sr, T i  - A l ,  Fe, Ca, S i ,  

Z r ,  S i  - €If, Al, T i ,  
cu, m 
Fe, Cu, T a  
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n Calcium titanate 
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I 
I 

Coating 

Coating mass per unit area, mglsq cm 

Method of 
appl ica t ion  

Figure 9. - Coating-mass increase at 5Kl0 K. 

Before t e s t  

perature over t he  measured range of 400' t o  600' K. 
cium and barium t i t a n a t e ,  however, showed a marked drop i n  absorptance of ap- 
proximately 0.1 during the  f i rs t  heating t o  600° K. 
these specimens exhibited no fu r the r  change i n  absorptance. 
always a drop i n  absorptance, never an increase. 
unresolved. 
Table I11 denotes the  general  appearance of the specimens before and a f t e r  t e s t -  
ing. 

Two of t he  coatings, ca l -  

After the i n i t i a l  heating, 

The reason for t h i s  change i s  
This change i s  

The f i n a l  s t ab i l i zed  absorptance values a re  given i n  t a b l e  I. 

A l l  specimens had a m a t  f in i sh .  

After t e s t  

Anodized Aluminum 

B a r i u m  

Calcium 

Rokide MA 

Rokide ZS 

S-trontium 

Zirconium 

t i t a n a t e  

t i t a n a t e  

titanate 

ti t ana te  

Measurements of emittance and absorptance were made on four anodized a lu -  
Two of the  specimens had a layer  of carbon electrophoret i -  

Two other anodized 
The purpose of t he  carbon black coat ing i s  t o  

minum specimens. 
c a l l y  deposited i n t o  the  pores of the anodized aluminum. 
specimens were l e f t  uncoated. 
obtain a lightweight, high emittance coating. It w a s  desired t o  determine the  
increase i n  emittance caused by adding the  carbon layer  t o  the  anodized alumi- 

num specimens. 

Plasma-arc 
spraying 

Plasma-arc 
spraying 

Rokide 
process 

Rokide 
process 

Plasma-are 
spraying 

Plasma-arc 
spraying 

TABLE: 111. - DESCRIPTION OF CERAMIC COATINGS 

Light gray NO change 

Dark gray No change 

Gray wi th  

Gray wi th  

Light gray with 

Dark gray 

r ed  t i n t  

blue t i n t  

b lue  t i n t  

Gray 

No change 

No change 

~ No change 

The emittance measurements 
were made i n  the  temperature 
range 300' t o  600° K. Plots  of 
emittance as a funct ion of t e m -  
perature f o r  two uncoated anod- 
ized specimens (1 and 2 )  a r e  
given i n  f igure  10. 
men 1 w a s  du l l e r  i n  appearance 
than specimen 2, there  w a s  prob- 
ab ly  a thickness va r i a t ion  t h a t  
could account f o r  the  difference 
i n  emittance between the  two. 
The emittance data  f o r  t he  two 
blackened specimens ( 3  and 4) 
a r e  a l s o  given i n  figure 10. 
These two specimens were similar 

Since speci-  
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i n  appearance and were black i n  color. 

0 4  . 6 ~ ~ ~ ~ m ~ ~ ~  

W 

U c 
al- 

w 

kittance, 
E 

.a 

IJ ) Uncoated 

Temperature 
during emittance 

" 

.94 

.91 

.89 

.89 

500 

500 

320 

320 

Temperature, T, OK 

Figure 10. - Emittance of plain and black anodized aluminum as 
function of temperature. 

The addition of the  carbon layer  
has a de f in i t e  e f f e c t  on emittance. 
The two uncoated specimens both ex- 
hibited decreasing emittance with 
temperature, while t he  black specimens 
exhibited s l i g h t l y  increasing emit- 
tance with increasing temperature. 
The dlfference i n  emittance between 
uncoated and blackened specimens a t  
600°K i s  approximately 25 percent 
w i t h  t he  black specimens a t  0.95. A 
summary of data f o r  the  anodized speci-  
mens i s  presented i n  t ab le  IV. The 
absorptance values a re  constant over 

the measured temperature range. 
of t he  addition of the carbon. 

A large increase i n  absorptance occurs because 

T i l e  Coat Paint 

Measurements of emittance and absorptance have been made on aluminum sub- 
s t r a t e s  coated with Ti le  Coat, (manufactured by Wilbur & W i l l i a m s ,  Norwood, 
Mass.) a white epoxy-based paint  with a titanium dioxide pigment. 
were made on two specimens a t  320' K. 
men, t h e  subs t ra te  w a s  dipped i n t o  the  paint, and the excess w a s  allowed t o  
drain off. This resul ted i n  a smooth even coating. The paint  w a s  sprayed on 
the  other substrate  and appeared whiter. 
were both about 0.2 millimeter. 
t ab l e  IV.  

Measurements 
I n  order t o  apply t h e  paint  t o  one speci- 

The thicknesses of the  paint  coatings 
The data  fo r  the two specimens a re  given i n  

TABLE IV. - EMITTANCE AND ABSORPTANCE OF ANODIZED 
ALUMI"M AND WHITE EPOXY-BASED PAINT 

Coating 

None 
(anodized) 
specimen 1) 

(anodized 
specimen 2 )  

Carbon black 
(anodized 
specimen 3) 

Carbon black 
(anodized 
specimen 4) 

Dipped tile 
coat 

Sprayed tile 
coat 

None 

measurement, 1 %  

500 

I 

l 

ib sorp tance , 
a 

0.51 

.48 

.97 

.97 

.38 

.34 

Temperature 
luring absorptance 

measurement, 
OK 

400 to 600 

400 to 600 

400 to 600 

400 to 600 

320 

320 
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The emittance is  consistent and agrees with previous r e s u l t s  published i n  2 

The sprayed coating had an absorptance 
reference 11. 
handling a f f ec t s  the absorptance values. 
t h a t  was 11 percent lower than t h e  dipped coating; t h i s  difference w a s  a l so  
visual ly  apparent. 
t h a t  i n  reference 14 (0.20). 
spec t ra l  mismatch between the  solar  simulator used i n  the  measurements reported 
herein and the  Johnson curve. 

From t ab le  I V  it i s  seen t h a t  t h e  method of appl icat ion and 

The absorptance data reported herein a re  much higher than 
Part of t h i s  difference can be a t t r i bu ted  t o  

An attempt was made t o  estimate t h e  e r ro r  i n  absorptance readings due t o  
t h i s  spec t ra l  mismatch. 
Coat paint given i n  reference 1 4  and t h e  spec t r a l  d i s t r ibu t ion  of the  so la r  
simulator given i n  f igure  7 indicates  t h a t  t h e  absorptance readings reported 
herein are 15 percent high. The remaining discrepancy must be a t t r i bu ted  t o  
the  uncertainty i n  the  measured spec t r a l  i r radiance of the simulator or  t o  a 
s i m i l a r  uncertainty encountered by t h e  invest igators  of reference 14. 

An analysis using the  spec t ra l  absorptance of the  T i l e  

CONCLUDING REMAFKS 

An apparatus has been developed fo r  measuring the  emittance and the  ab- 
sorptance of a wide var ie ty  of surfaces i n  the temperature range 280' t o  600° K. 
ESnittance measurements were made i n  t h e  range 0.52 t o  0.97, and absorptance 
measurements covered t h e  range from 0.34 t o  0.97. 
emittance measurements w a s  estimated t o  be within -+5 percent. The absorptance 
measurements a re  considered accurate t o  +5 percent of those f o r  a per fec t  so l a r  
simulator, Since the  spec t r a l  d i s t r ibu t ion  of the  irradiance of t he  simulator 
does not match the  Sun's i r radiance exactly,  an addi t ional  absorptance e r ro r  i s  
involved, depending on the  spec t r a l  absorptance of the  specimen. Repeatabil i ty 
of measurements for a given specimen has been +1 percent fo r  emittance and 
25 percent fo r  absorptance. 

Overall accuracy of t h e  

In general, where comparisons are avai lable ,  the  measured emittance data 
agree with published resu l t s .  
measured and published absorptance data  f o r  T i l e  Coat paint,  which a r e  t h e  only 
absorptance data  compared. This seems t o  indicate  that ,  i f  any appreciable 
e r ro r  i s  inherent i n  the  measurements reported herein, it i s  i n  the  i r radiance 
of the solar simulator o r  i n  t h e  techniques of applying and handling the  coat- 
ings. 

There i s  a la rge  difference,  however, between 

From emittance measurements of various ceramic coatings it w a s  found t h a t  

It w a s  a l s o  noted t h a t  t h e  emittance did not vary 
there  i s  a coating thickness beyond which appl icat ion of addi t ional  ceramic has 
l i t t l e  e f fec t  on emittance. 
much with temperature fo r  the  ceramic coatings. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, October 8, 1964 
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b 

receiver 

a, 
Q Qs 

Q I  

LHeater 

APPENDIX A 

t i o n  receiver with nonreflecting 
w a l l s .  It i s  assumed a l l  radia- 
t i o n  emitted by t h e  t e s t  surface 
i s  incident on the  radiat ion re- 
ceiver. In  f igure  11, Q i s  the  
power emitted from t h e  t e s t  sur- 
face, Qo 
from the  rad ia t ion  receiver  sur- 

V-Tosolar 
simulator v- 

i s  the  power emitted 

DERIVATION OF EQUATIONS 

The expressions f o r  determining emittance and absorptance a re  derived by 
applying an energy balance t o  the t e s t  specimen assembly. 
specimen attached t o  a heater plate,  as shown i n  f igure  11. 

Consider a t e s t  

I n  t h e  t e s t  apparatus, the  t e s t  specimen and the  heater p l a t e  a re  enclosed 
i n  a heat  shield,  so t h a t  there  i s  no radiant heat exchange between the  back 
and s ides  of t he  t e s t  specimen assembly and t he  radiat ion receiver.  
energy or power balance applied t o  t h e  t e s t  specimen assembly i s  as follows: 

Thus, an 

The expressions f ( Q o )  and 

The terms i n  equation ( A l )  can be rewri t ten by means of t he  

f ( Q s )  are t he  amounts of power absorbed by the  
t e s t  specimen surface from the radiat ion receiver and the  so la r  simulator, re -  
spectively.  
Stefan-Boltzmann l a w  and other heat-transfer considerations and expressed i n  
terms of measurable parameter, including the  absorptance and emittance: 

4 Q = UAET 

The apparatus was designed t o  minimize 
zero. The QL term includes conduction and convection from the  t e s t  specimen 
assembly and rad ia t ion  exchange between the  sides of t he  tes t  specimen assembly 
and the  rad ia t ion  receiver. A l s o ,  since the  t e s t  i s  made a t  steady-state tem- 
perature conditions, there  i s  no change i n  stored energy within the t e s t  speci- 

QL, and it i s  assumed equal t o  

15 



men assembly. 

Equation (A2)  i s  simplified by making two assumptions: 

(1) !The radiat ion receiver  a c t s  as a black diffuse body. Therefore 

Eo = 1 

and 

AoFo = AF = A 

since F = 1. 

( 2 )  The specimen a c t s  as  a gray body. Therefore 

E = a  

Hence 

f ( Q o )  = aAET$ 

When emittance i s  measured, no so la r  i r radiance i s  incident on t h e  speci-  
men ( H  = 0); hence, equation ( A l )  reduces t o  

G A E T ~  + P = aAcT4 (A71 

P 
E =  

a A ( T 4  - T:) 

To measure absorptance, t h e  specimen i s  exposed t o  simulated so la r  i r-  
radiance of i n t ens i ty  H. The term QI i s  adjusted t o  a new value P' s o  as 
t o  maintain t h e  specimen temperature a t  the  value it had during the  emittance 
t e s t .  

Therefore, equation ( A l )  reduces t o  

~ A E T ~  + asAH + P' = GAET* (A91 

Since the temperatures a re  t h e  same during emittance and absorptance tests,  
subtracting equation ( A 7 )  from equation (A9)  r e s u l t s  i n  

asAH + P' = P (A101  

P - P' 
AH as = 

Hence, emittance md absorptance a re  determined by  using measurements of tem- 
perature, area, power, and solar simulator irradiance.  

16 
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a APPEM)IX B 

CALIBRATION OF TOTAL IRRADIANCE OF SIIvIULATOR 

The t o t a l  irradiance of the  so l a r  simulator i s  measured by two methods. 
One method u t i l i z e s  a commercial narrow-angle pyrheliometer, and the  other 
method u t i l i z e s  a surface whose normal absorptance charac te r i s t ic  i s  t h a t  of a 
blackbody. 
total  i r radiance without regard t o  spec t r a l  dis t r ibut ion.  

It should be emphasized t h a t  these methods of measurement determine 

The pyrheliometer uses a thermopile as the sensing element. During mea- 
surement of t h e  t o t a l  irradiance,  the pyrheliometer replaces the t e s t  specimen 
mounting assembly and i s  positioned so t h a t  the  thermopile i s  located i n  the 
plane of the  t e s t  specimen with the  chamber a t  atmospheric pressure. Therefore, 
t he  t o t a l  irradiance of the  simulator i s  measured under op t i ca l  conditions iden- 
t i c a l  t o  those t h a t  e x i s t  during absorptance measurements. The pyrheliometer i s  
ca l ibra ted  against  an angstrom compensation pyrheliometer a t  the Lewis Research 
Center . 

A second method of measuring the  t o t a l  i r radiance u t i l i z e s  a blackbody 
normal absorptance surface t h a t  replaces the t es t  specimen, as described i n  the  
sect ion MEASURING TECHNIQUE. 
hence the  t o t a l  irradiance can be found by using t h e  absorptance measuring 
technique. The surface consists of a ser ies  of parallel notches formed by 
stacking razor blade edges s ide by side. Use of a similar reference surface i s  
described i n  reference 15. A cutaway drawing of t he  reference surface i s  shown 

An absorptance of 1 is  assumed fo r  the surface; 

i n  figure 12. 

Z 

LHeater element C~-7838 Thermocouple leads 

Figure 12. - Reference surface. 

An analysis  of the  
notch configuration of 
the surface indicates  a 
normal solar absorptance 
greater  than 0.99. This 
analysis i s  predicted on 
the  assumptions of specu- 
l a r  r e f l ec t ion  by  the  
notch surfaces and per- 
f e c t l y  sharp blade edges. 
The assumption of specu- 
l a r  re f lec t ion  has been 
validated by measuring 
t h e  surface f i n i s h  of 
the blades, which w a s  
found t o  be within 
4 microinches. 

Measurements have 
shown t h a t  t he  absorp- 
tance i s  independent of 
the  angle of inc l ina t ion  
from the  normal up t o  
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300. The angle of inc l ina t ion  i s  generated by ro t a t ing  the  reference about an 
axis  pa ra l l e l  t o  t he  razor blade edges (x-axis i n  f ig .  12 ) .  
have also shown t h a t  t he  hemispherical t o t a l  emittance of t he  surface i s  0.78. 

, 
These measurements 

During construction, it was found t h a t  t h e  boundary of t h e  reference sur- 
face w a s  i r regular ,  and hence the  area of t he  reference surface w a s  not wel l  
known. To assure t h a t  a known area  of reference surface i s  radiated by the  
simulator, a temperature-controlled s top  i s  placed d i r e c t l y  i n  f ron t  of the  
razor blades. Since the  boundary of t h e  s top i s  regular and well  defined, a 
known cross-sectional area of t h e  collimated so lar  beam i s  incident on the  
reference. 
fore  and a f t e r  t h e  simulator i s  turned on. 
simulator irradiance agree within 2 percent. 

The s top  i s  water cooled t o  maintain it at the same temperature be- 
The two methods of measuring t h e  

18 



REFERENCES 1 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12 . 
13. 

14. 

Stockman, Norbert O., and Kramer, John L. : Effect  of Variable Thermal 
Properties on One-Dimensional Heat Transfer i n  Radiating Fins. NASA TN 
D-1878, 1963. 

Nyland, T. W.: Apparatus fo r  t h e  Measurement of Hemispherical Emittance 
NASA SP-31, 1963, pp. 393- and Solar Absorptance from 270° t o  650° X. 

401. 

Curtis, H. B.: Measurement of Hemispherical Total Emittance and Normal 
Solar Absorptance of Selected Materials i n  the  Temperature Range 280' 
t o  60O0 K. Paper 64-256, AIAA, 1964. 

Campbell, D. A., and Schulte, H. A. : Measurement of Emissivity a t  Low Tem- 
peratures. Tech. Rep. W-R2J, Chrysler Corp., Nov. 20, 1957. 

Butler, C. P.: Solar Absorptance and Emittance of Real Surfaces a t  High 
Temperatures. Pt. I. Polished Metals. Research and Development Techni- 
c a l  Report. TR-483, N a v a l  Radiological Defense Lab., Dec. 2, 1960. 

Gordon, G. D.: Measurement of Ratio of Absorptivity of Sunlight t o  Thermal 
Emissivity. Rev. Sci. Instr . ,  vol. 31, no. 11, Nov. 1960, pp. 1204-1208. 

Anon: Measurement of Spectral  and T o t a l h i t t a n c e  of Materials and Surfaces 
Under Simulated Space Conditions. Rep. FVA-1863, P r a t t  and Whitney A i r -  
c r a f t ,  1960. 

Anon: I G Y  Construction Manual. Pt. V I .  Radiation Instruments and Mea- 
surements. Pergamon Press, 1961. 

Rachal, L. H.: Fast Response, Low Ine r t i a  Vacuum Furnace. Rev. Sci. 
Instr . ,  vol. 32, no. 8, Aug. 1961, pp. 941-942. 

Uguccini, Orlando W., and Pollack, John L.: A Carbon-Arc Solar Simulator. 
Paper 62-WA-241, ASME, 1962. 

Johnson, Francis S.: The Solar Constant. Jour. Meteorology, vol. 11, 
no. 6, Dec. 1954, pp. 431-439. 

Nelson, K. E., and Bevans, J. T. : Errors of the  Calorimetric Method of 
Total  Emittance Measurement. NASA SP-31, 1963, pp. 55-65. 

Askwyth, W. H., and Hayes, R. J. : Determination of t h e  Eaiss iv i ty  of Ma- 
t e r i a l s .  PWA-2128, Quarter ly  Bog.  Rep. Ju ly  l-Sept. 30, 1962, P ra t t  and 
Whitney Aircraf t ,  1962. 

Brock, C. L., and Ernst, W. A. : Solar Reflective Finish for  Space Applica- 
t ions.  Rep. AA-3276, Westinghouse Electr ic  Corp., Dec. 1962. 

19 



15. Neel, Carr B.: Measurement of Thermal Radiation Characteristics of f 

Temperature-Control Surfaces During Flight in Space. Paper Presented at 
Ninth Nat. ISA Aerospace Instru. Symposium, San Francisco (Calif.), 
May 6-8, 1963. 

20 NASA-Langley, 1964 E-2622 

~~ ~ 


